手机版

百科游戏 手游攻略

对数函数习题?对数函数练习题

百科 2025-12-28 14:50:39 手游攻略 阅读:2742次

对数函数练习题

可以设f(x)=a^x-b^x,(a>1,0

则y=a^x在(-oo,+oo)上是单调增加的;

y=b^x在(-oo,+oo)上是单调减少的;

所以y=-b^x在(-oo,+oo)上是单调增加的;

所以函数f(x)在(-oo,+oo)上是单调增加的;

所以x>=-y

---->x+y>=0

对数函数的四则运算问题

对数的运算法则:

一、四则运算法则:

loga(AB)=logaA+logaB

loga(A/B)=logaA-logaB

logaN^x=xlogaN

二、换底公式

logMN=logaM/logaN

三、换底公式导出:

logMN=-logNM

四、对数恒等式

a^(logaM)=M

指数的运算法则:

1、[a^m]×[a^n]=a^(m+n)【同底数幂相乘,底数不变,指数相加】

2、[a^m]÷[a^n]=a^(m-n)【同底数幂相除,底数不变,指数相减】

3、[a^m]^n=a^(mn)【幂的乘方,底数不变,指数相乘】

4、[ab]^m=(a^m)×(a^m)【积的乘方,等于各个因式分别乘方,再把所得的幂相乘】

对数函数的课后习题麻烦哪位帮忙找一下

一、选择题(本题共12小题,每小题5分,共60分)

1.已知集合A=R,B=R+,f:A→B是从A到B的一个映射,若f:x→2x-1,则B中的元素3的原象为()

A.-1B.1C.2D.3

2.函数f(x)=的定义域是()

A.-∞,0]B.[0,+∞C.(-∞,0)D.(-∞,+∞)

3.设f(x)=|x-1|-|x|,则f[f()]=()

A.-B.0C.D.1

4.若函数f(x)=+2x+log2x的值域是{3,-1,5+,20},则其定义域是()

(A){0,1,2,4}(B){,1,2,4}(C){,2,4}(D){,1,2,4,8}

5.反函数是()

A.B.

C.D.

6.若任取x1,x2∈[a,b],且x1≠x2,都有成立,则称f(x)是[a,b]上的凸函数。试问:在下列图像中,是凸函数图像的为()

7..函数f(x)=在区间(-2,+∞)上单调递增,则实数a的取值范围是()

A.(0,)B.(,+∞)C.(-2,+∞)D.(-∞,-1)∪(1,+∞)

8.下列函数既是奇函数,又在区间上单调递减的是()

A.B.C.D.

9.设函数||+b+c给出下列四个命题:

①c=0时,y是奇函数②b0,c>0时,方程0只有一个实根

③y的图象关于(0,c)对称④方程0至多两个实根

其中正确的命题是()

A.①、④B.①、③C.①、②、③D.①、②、④

10.已知函数f(x)=3-2|x|,g(x)=x2-2x,构造函数F(x),定义如下:当f(x)≥g(x)时,F(x)=g(x);当f(x)

A.有最大值7-2,无最小值B.有最大值3,最小值-1

C.有最大值3,无最小值D.无最大值,也无最小值

11.已知函数是定义在上的奇函数,当时,的图象如图所示,则不等式的解集是()

A.

B.

C.

D.

12.设定义域为R的函数f(x)满足,且f(-1)=,则f(2006)的值为()

A.-1B.1C.2006D.

二、填空题(本题共4题,每小题4分,共16分)

13.已知a,b为常数,若则.

14.设函数f(x)的图象关于点(1,2)对称,且存在反函数f-1(x),f(4)=0,则f-1(4)=.

15.若对于任意a[-1,1],函数f(x)=x+(a-4)x+4-2a的值恒大于零,则x的取值范围是.

16.设函数f(x)的定义域为R,若存在常数M>0,使得|f(x)|≤M|x|对一切实数x均成立,则称f(x)为F函数,给出下列函数:

①f(x)=0;②f(x)=x2;③f(x)=(sinx+cosx);④f(x)=;⑤f(x)是定义在R上的奇函数,且对于任意实数x1,x2,均有|f(x1)-f(x2)|≤2|x1-x2|。则其中是F函数的序号是___________________

三、解答题(本题共6小题,共74分)

17.(本小题满分12分)判断y=1-2x3在(-)上的单调性,并用定义证明。

18.(本小题满分12分)二次函数f(x)满足且f(0)=1.

(1)求f(x)的解析式;

(2)在区间上,y=f(x)的图象恒在y=2x+m的图象上方,试确定实数m的范围.

19.(本小题满分12分)已知函数(a,b为常数)且方程f(x)-x+12=0有两个实根为x1=3,x2=4.

(1)求函数f(x)的解析式;

(2)设k>1,解关于x的不等式;.

20.(本小题满分12分)已知某商品的价格上涨x%,销售的数量就减少mx%,其中m为正的常数。

(1)当m=时,该商品的价格上涨多少,就能使销售的总金额最大?

(2)如果适当地涨价,能使销售总金额增加,求m的取值范围

21.已知定义域为R的函数f(x)满足f(f(x)-x2+x)=f(x)-x2+x.

(Ⅰ)若f(2)=3,求f(1);又若f(0)=a,求f(a);

(Ⅱ)设有且仅有一个实数x0,使得f(x0?)=x0,求函数f(x)的解析表达式.

22.(本小题满分14分)已知函数=+有如下性质:如果常数>0,那么该函数在0,上是减函数,在,+∞上是增函数.

(1)如果函数=+(>0)的值域为6,+∞,求的值;

(2)研究函数=+(常数>0)在定义域内的单调性,并说明理由;

(3)对函数=+和=+(常数>0)作出推广,使它们都是你所推广的函数的特例.

(4)(理科生做)研究推广后的函数的单调性(只须写出结论,不必证明),并求函数=+(是正整数)在区间[,2]上的最大值和最小值(可利用你的研究结论).

南昌市高中新课程复习训练题

数学(函数(一))参考答案

一、选择题

题号

1

2

3

4

5

6

7

8

9

10

11

12

答案

C

A

D

B

B

C

B

D

C

A

B

B

二、填空题

(13).2;(14).-2;(15).(-∞?1)∪(3,+∞);(16).①④⑤

三、解答题

17.证明:任取x1,x2R,且-

f(x1)-f(x2)=(1-2x31)-(1-2x32)=2(x32-x13)=2(x2-x1)(x22+x1x2+x21)=2(x2-x1)[(x1+x2)2+x12]∵x2>x1∴x0-x1>0,又(x1+x2)2+x12>0,∴f(x1)-f(x2)>0即f(x1)>f(x2)故f(x)=1-2x3在(-,+)上为单调减函数。

或利用导数来证明(略)

18.解:(1)设f(x)=ax2+bx+c,由f(0)=1得c=1,故f(x)=ax2+bx+1.

∵f(x+1)-f(x)=2x,∴a(x+1)2+b(x+1)+1-(ax2+bx+1)=2x.

即2ax+a+b=2x,所以,∴f(x)=x2-x+1.

(2)由题意得x2-x+1>2x+m在[-1,1]上恒成立.即x2-3x+1-m>0在[-1,1]上恒成立.

设g(x)=x2-3x+1-m,其图象的对称轴为直线x=,所以g(x)在[-1,1]上递减.

故只需g(1)>0,即12-3×1+1-m>0,解得m<-1.

19.解:(1)将得

(2)不等式即为

①当

②当

③.

20.解:(1)设商品现在定价a元,卖出的数量为b个。

由题设:当价格上涨x%时,销售总额为y=a(1+x%)b(1-mx%),

即,(0

取m=得:y=,当x=50时,ymax=ab,

即:该商品的价格上涨50%时,销售总金额最大。

(2)二次函数,在上递增,在上递减,

适当地涨价能使销售总金额增加,即在(0,)内存在一个区间,使函数y在此区间上是增函数,所以,解得,即所求的取值范围是(0,1).

21.解:(Ⅰ)因为对任意x∈R,有f(f(x)-x2+x)=f(x)-x2+x,

所以f(f(2)-22+2)=f(2)-22+2.

又由f(2)=3,得f(3-22+2)-3-22+2,即f(1)=1.

若f(0)=a,则f(a-02+0)=a-02+0,即f(a)=a.

(Ⅱ)因为对任意x∈R,有f(f(x))-x2+x)=f(x)-x2+x.

又因为有且只有一个实数x0,使得f(x0)-x0.所以对任意xεR,有f(x)-x2+x=x0.

在上式中令x=x0,有f(x0)-x+x0=x0,

又因为f(x0)-x0,所以x0-x=0,故x0=0或x0=1.

若x0=0,则f(x)-x2+x=0,即f(x)=x2-x.

但方程x2-x=x有两上不同实根,与题设条件矛质,故x2≠0.

若x2=1,则有f(x)-x2+x=1,即f(x)=x2-x+1.易验证该函数满足题设条件.

综上,所求函数为f(x)=x2-x+1(xR)

22.解:(1)易知,时,。

(2)=+是偶函数。易知,该函数在上是减函数,在上是增函数;则该函数在上是减函数,在上是增函数。

(3)推广:函数,

当为奇数时,,是减函数;,是增函数。

,是增函数;,是减函数。

当为偶数时,,是减函数;,是增函数。,是减函数;,是增函数。

(4)(理科生做)=+

当时,。

∴,是减函数;,是增函数。

∴函数=+在区间[,2]上的最大值为,最小值为。

本文链接:https://bk.89qw.com/a-1003817

最近发表
网站分类