手机版

百科游戏 手游攻略

立体几何图形(几何立体图形有哪些)

百科 2025-12-23 13:29:45 手游攻略 阅读:326次

这篇文章给大家聊聊关于立体几何图形,以及几何立体图形有哪些对应的知识点,希望对各位有所帮助,不要忘了收藏本站哦。

立体图形有哪些

常见的立体图形有柱体(圆柱、棱柱)、锥体(圆锥、棱锥)、台体(圆台、棱台)和球体(球)四类。比如正方体、长方体、圆柱、圆锥、直三棱柱等。

一、正方体

用六个完全相同的正方形围成的立体图形叫正方体。侧面和底面均为正方形的直平行六面体叫正方体,即棱长都相等的六面体,又称“立方体”“正六面体”。正方体是特殊的长方体。正方体的动态定义:由一个正方形向垂直于正方形所在面的方向平移该正方形的边长而得到的立体图形。

二、长方体

长方体(cuboid)是底面是长方形的直棱柱。正方体是特殊的长方体,正方体是六个面都是正方形的长方体。长方体的每一个矩形都叫做长方体的面,面与面相交的线叫做长方体的棱,三条棱相交的点叫做长方体的顶点。

长方体六个面面积的和,叫作长方体的表面积。长方体的体积是对长方体的一种度量,长方体的体积等于长、宽、高之积。

三、圆柱

圆柱(circularcylinder)是由以矩形的一条边所在直线为旋转轴,其余三边绕该旋转轴旋转一周而形成的几何体。它有2个大小相同、相互平行的圆形底面和1个曲面侧面。其侧面展开是矩形。

四、圆锥

圆锥是一种几何图形,有两种定义。解析几何定义:圆锥面和一个截它的平面(满足交线为圆)组成的空间几何图形叫圆锥。

立体几何定义:以直角三角形的直角边所在直线为旋转轴,其余两边旋转360度而成的曲面所围成的几何体叫做圆锥。旋转轴叫做圆锥的轴。

垂直于轴的边旋转而成的曲面叫做圆锥的底面。不垂直于轴的边旋转而成的曲面叫做圆锥的侧面。无论旋转到什么位置,不垂直于轴的边都叫做圆锥的母线。(边是指直角三角形两个旋转边)

五、直三棱柱

直三棱柱是各个侧面的高相等,底面是三角形,上表面和下表面平行且全等,所有的侧棱相等且相互平行且垂直于两底面的棱柱。上下表面三角形可以是任意三角形。正三棱柱是直三棱柱的特殊情况,即上下面是正三角形。

参考资料来源:百度百科-立体图形

参考资料来源:百度百科-正方体

参考资料来源:百度百科-长方体

参考资料来源:百度百科-圆柱

参考资料来源:百度百科-圆锥

参考资料来源:百度百科-直三棱柱

常见的立体图形有哪些

常见的立体图形有柱体(圆柱、棱柱)、锥体(圆锥、棱锥)、台体(圆台、棱台)和球体(球)四类。比如正方体、长方体、圆柱、圆锥、直三棱柱等。

一、正方体

用六个完全相同的正方形围成的立体图形叫正方体。侧面和底面均为正方形的直平行六面体叫正方体,即棱长都相等的六面体,又称“立方体”“正六面体”。正方体是特殊的长方体。正方体的动态定义:由一个正方形向垂直于正方形所在面的方向平移该正方形的边长而得到的立体图形。

二、长方体

长方体(cuboid)是底面是长方形的直棱柱。正方体是特殊的长方体,正方体是六个面都是正方形的长方体。长方体的每一个矩形都叫做长方体的面,面与面相交的线叫做长方体的棱,三条棱相交的点叫做长方体的顶点。

长方体六个面面积的和,叫作长方体的表面积。长方体的体积是对长方体的一种度量,长方体的体积等于长、宽、高之积。

三、圆柱

圆柱(circularcylinder)是由以矩形的一条边所在直线为旋转轴,其余三边绕该旋转轴旋转一周而形成的几何体。它有2个大小相同、相互平行的圆形底面和1个曲面侧面。其侧面展开是矩形。

四、圆锥

圆锥是一种几何图形,有两种定义。解析几何定义:圆锥面和一个截它的平面(满足交线为圆)组成的空间几何图形叫圆锥。

立体几何定义:以直角三角形的直角边所在直线为旋转轴,其余两边旋转360度而成的曲面所围成的几何体叫做圆锥。旋转轴叫做圆锥的轴。

垂直于轴的边旋转而成的曲面叫做圆锥的底面。不垂直于轴的边旋转而成的曲面叫做圆锥的侧面。无论旋转到什么位置,不垂直于轴的边都叫做圆锥的母线。(边是指直角三角形两个旋转边)

五、直三棱柱

直三棱柱是各个侧面的高相等,底面是三角形,上表面和下表面平行且全等,所有的侧棱相等且相互平行且垂直于两底面的棱柱。上下表面三角形可以是任意三角形。正三棱柱是直三棱柱的特殊情况,即上下面是正三角形。

参考资料来源:百度百科-立体图形

参考资料来源:百度百科-正方体

参考资料来源:百度百科-长方体

参考资料来源:百度百科-圆柱

参考资料来源:百度百科-圆锥

参考资料来源:百度百科-直三棱柱

几何立体图形有哪些

立体几何图形可以分为以下几类:

第一类:柱体;包括:圆柱和棱柱,棱柱又可分为直棱柱和斜棱柱,棱柱体按底面边数的多少又可分为三棱柱、四棱柱、N棱柱;棱柱体积统一等于底面面积乘以高,即V=SH,第二类:锥体;包括:圆锥体和棱锥体,棱锥分为三棱锥、四棱锥以及N棱锥;棱锥体积统一为V=SH/3,第三类:旋转体:包括:圆柱;圆台;圆锥;球;球冠;弓环;圆环;堤环;扇环;枣核形;等其表面积公式为:S=2*L*π*R(L是基图的周长,π是常数,R是重心到轴的距离)其体积公式为:V=2*S*π*R(S是基图的面积,π是常数,R是重心到轴的距离)第四类:截面体:包括:棱台;圆台;斜截圆柱;斜截棱柱;斜截圆锥;球冠;球缺等其表面积和体积一般都是根据图形加减解答。

关于本次立体几何图形和几何立体图形有哪些的问题分享到这里就结束了,如果解决了您的问题,我们非常高兴。

本文链接:https://bk.89qw.com/a-1011468

最近发表
网站分类