手机版

百科游戏 手游攻略

数产生的历史演变过程是怎样的(数的产生数学史)

百科 2025-10-21 08:45:12 手游攻略 阅读:6788次

最近很多小伙伴在找数产生的历史演变过程是怎样的的相关内容,以及数的产生数学史对应的知识点,劳动晚报小编为大家整理一下《数产生的历史演变过程是怎样的》的相关资讯,另外还找了一部分有关《数的产生数学史》的内容,文章篇幅比较长,希望对大家有帮助!

本文目录一览:

  • 1、数字的演变历史
  • 2、数字的演变历史有哪些?
  • 3、数学的有怎样的发展历史?
  • 4、古代人们的数字是怎么演变来的?
  • 5、数产生的历史演变过程是怎样的?
  • 6、数学是怎么产生的,它的发展历史是什么

数字的演变历史

我国古代也很重视记数符号,最古老的甲骨文和钟鼎中都有记数的符号,不过难写难认,后人没有沿用。到春秋战国时期,生产迅速发展,适应这一需要,我们的祖先创造了一种十分重要的计算方法--筹算。筹算用的算筹是竹制的小棍,

也有骨制的。按规定的横竖长短顺序摆好,就可用来记数和进行运算。随着筹算的普及,算筹的摆法也就成为记数的符号了。算筹摆法有横纵两式,都能表示同样的数字。

从算筹数码中没有"10"这个数可以清楚地看出,筹算从一开始就严格遵循十位进制。9位以上的数就要进一位。同一个数字放在百位上就是几百,放在万位上就是几万。这样的计算法在当时是很先进的。因为在世界的其他地方真正使用十进位制时已到了公元6世纪末。

但筹算数码中开始没有"零",遇到"零"就空位。比如"6708",就可以表示为"┴ ╥ "。数字中没有"零",是很容易发生错误的。

所以后来有人把铜钱摆在空位上,以免弄错,这或许与"零"的出现有关。不过多数人认为,"0"这一数学符号的发明应归功于公元6世纪的印度人。他们最早用黑点(·)表示零,后来逐渐变成了"0"。说起"0"的出现,应该指出,我国古代文字中,"零"字出现很早。不过那时它不表示"空无所有",而只表示"零碎"、"不多"的意思。如"零头"、"零星"、"零丁"。"一百零五"的意思是:

在一百之外,还有一个零头五。随着阿拉数字的引进。"105"恰恰读作"一百零五","零"字与"0"恰好对应,"零"也就具有了"0"的含义。

扩展资料

公元7世纪,团结在伊斯兰教下的阿拉伯人征服了周围的民族,建立了东起印度,西经非洲到西班牙的撒拉孙大帝国。后来,这个伊斯兰大帝国分裂成东、西两个国家。

由于这两个国家的各代君王都鼓励文化和艺术,所以两国的首都非常繁荣,特别繁荣的是东都——巴格达,这里产生了独特的阿拉伯文化。

公元751年,有一位印度的天文学家拜访巴格达王宫,他带来了印度制作的天文表,并把它献给了当时的国王。

印度数字以及印度式的计算方法(即我们现在用的计算法)也正是这个时候介绍给阿拉伯人的。由于印度数字和印度计算法既简单又方便,它的优点远远超过其他的计算法,所以很快由阿拉伯人广泛传播到欧洲各国。在印度产生的数字被称为“阿拉伯数字”的原因就在于此。

数字的演变历史有哪些?

数字并不是阿拉伯人发明创造的,而是发源于古印度。

数字后来被阿拉伯人用于经商而掌握,经改进,并传到了西方。西方人由于首先接触到阿拉伯人使用过这些数据,便误以为是他们发明的,所以便将这些title数字称为阿拉伯数字,造成了这一历史的误会。后来,随着在世界各地的普遍传播,大家都都认同了"阿拉伯数字"这个说法,使世界上很多地方的人都误认为是阿拉伯人发明的数字,实际上是阿拉伯人最早开始广泛使用数字。传到欧洲后,欧洲人非常喜爱这套方便适用的记数符号,尽管后来人们知道了事情的真相,但由于习惯了,就一直没有改正过来。

数字是古代印度人在生产和实践中逐步创造出来的。

在古代印度,进行城市建设时需要设计和规划,进行祭祀时需要计算日月星辰的运行,于是,数学计算就产生了。大约在公元前3000多年,印度河流域居民的数字就比较先进,而且采用了十进位的计算方法。

到公元前三世纪,印度出现了整套的数字,但在各地区的写法并不完全一致,其中最有代表性的是婆罗门式:这一组数字在当时是比较常用的。它的特点是从"1"到"9"每个数都有专字。现代数字就是由这一组数字演化而来。在这一组数字中,还没有出现"0"(零)的符号。"0"这个数字是到了笈多王朝(公元320-550年)时期才出现的。公元四世纪完成的数学著作《太阳手册》中,已使用"0"的符号,当时只是实心小圆点"·"。后来,小圆点演化成为小圆圈"0"。这样,一套从"1"到"0"的数字就趋于完善了。这是古代印度人民对世界文化的巨大贡献。

古印度发明的数字首先传到斯里兰卡、缅甸、柬埔寨等印度的近邻国家。

数学的有怎样的发展历史?

我国古代数学发轫于原始公社末期,当时私有制和货物交换产生以后,数与形的概念有了进一步的发展,已开始用文字符号取代结绳记事了。

春秋战国时期,筹算记数法已使用十进位值制,人们已谙熟九九乘法表?整数四则运算,并使用了分数。西汉时期《九章算术》的出现,为我国古代数学体系的形成起到了奠基作用。

春秋时期,有一个宋国人,在路上行走时捡到了一个别人遗失的契据,拿回家收藏了起来。他秘密地数了数那契据上的齿,然后告诉邻居说:“我发财的日子就要来到了!”

契据上的齿就是木刻上的缺口或刻痕,表示契据所代表的实物的价值。当人类没有发明文字,或文字使用尚不普遍时,常用在木片?竹片或骨片上刻痕的方法来记录数字?事件或传递信息,统称为“刻木记事”。

我国少数民族曾经使用木刻记事的,有独龙族?傈僳族?佤族?景颇族?哈尼族?拉祜族?苗族?瑶族?鄂伦春族?鄂温克族?珞巴族等。如佤族用木刻计算日子和账目;苗族用木刻记录歌词;景颇族用木刻记录下村寨之间的纠纷;哈尼族用木刻作为借贷?离婚?典当土地的契约;独龙族用递送木刻传达通知等。凡是通知性木刻,其上还常附上鸡毛?火炭?辣子等表意物件,用以强调事情的紧迫性。

其实,早在《列子·说符》记载的故事之前,我们的先民在从野蛮走向文明的漫长历程中有了数与形的概念。

出土的新石器时期的陶器大多为圆形或其他规则形状,陶器上有各种几何图案,通常还有3个着地点,这都是几何知识的萌芽。说明人们从辨别事物的多寡中逐渐认识了数,并创造了记数的符号。

殷商甲骨文中已有13个记数单字,最大的数是“三万”,最小的是“一”。一?十?百?千?万,各有专名。其中已经蕴含有十进位置值制萌芽。

传说大禹治水时,便左手拿着准绳,右手拿着规矩丈量大地。因此,我们可以说,“规”?“矩”?“准”?“绳”是我们祖先最早使用的数学工具。

人们丈量土地面积,测算山高谷深,计算产量多少,粟米交换,制订历法,都需要数学知识。在约成书于公元前1世纪的《周髀算经》中,记载了西周商高和周公答问之间涉及的勾股定理内容。

有一次,周公问商高:“古时做天文测量和订立历法,天没有台阶可以攀登上去,地又不能用尺寸去测量,请问数是怎样得来的?”商高回答说:“数是根据圆和方的道理得来的,圆从方来,方又从矩来。矩是根据乘?除计算出来的。”这里的“矩”原是指包含直角的作图工具。这说明了“勾股测量术”,即可用3∶4∶5的办法来构成直角三角形。

《周髀算经》中有“勾股各自乘,并而开方除之”的记载,这已经是勾股定理的一般形式了,说明当时已普遍使用了勾股定理。勾股定理是我国数学家的独立发明。

《礼记·内则》提到过,西周贵族子弟从9岁开始便要学习数目和记数方法,他们要受礼?乐?射?驭?书?数的训练,作为“六艺”之一的“数”已经开始成为专门的课程。

筹算记数法对世界数学的发展具有划时代意义。这个时期的测量数学在生产上有了广泛应用,在数学上也有相应地提高。

战国时期,随着铁器的出现,生产力的提高,我国开始了由奴隶制向封建制的过渡,新的生产关系促进了科学技术的发展与进步,此时私学开始出现。

秦汉时期,社会生产力得到恢复和发展,给数学和科学技术的发展带来新的活力,人们提出了若干算术难题,并创造了解勾股形?重差等新的数学方法。

同时,人们注重先秦文化典籍的收集?整理。作为数学新发展及先秦典籍的抢救工作的结晶,便是《九章算术》的成书,据东汉初郑众记载,当时的数学知识分成了方田?粟米?差分?少广?商功?均输?方程?赢不足?旁要九个部分,称为“九数”。九数确立了《九章算术》的基本框架。

《九章算术》集先秦至西汉数学知识之大成,是我国古代最重要的数学经典,对两汉时期以及后来数学的发展产生了很大的影响。它是西汉丞相张苍?天文学家耿寿昌收集秦火遗残,加以整理删补而成的。

《汉书·艺文志》所载《许商算术》?《杜忠算术》就是研究《九章算术》的作品。东汉时期马续?张衡?刘洪?郑玄?徐岳?王粲等通晓《九章算术》,也为之作注。这些著作的问世,推动了稍后的数学理论体系的建立。

《九章算术》的出现,奠定了我国古代数学的基础,它的框架?形式?风格和特点深刻影响了我国和东方的数学。

刻木记事

古代人们的数字是怎么演变来的?

公元前2500年前后,古印度出现了一种称为哈拉巴数码的铭文记数法。到公元前后通行起两种数码:卡罗什奇数字和婆罗门数字。公元3世纪,印度科学家巴格达发明了阿拉伯数字。公元4世纪后阿拉伯数字中零的符号日益明确,使记数逐渐发展成十进位值制,例如公元8世纪后出现的德温那格利数字。

大约公元9世纪,印度数字传入阿拉伯地区,从原来的婆罗门数字导出两种阿拉伯数字:被中东的阿拉伯人使用的东阿拉伯数字和被西班牙的阿拉伯人使用的西阿拉伯数字。东阿拉伯数字和阿拉伯人使用的形式很相似,西阿拉伯数字后来发展成我们广泛使用的形式。

阿拉伯数字笔画简单,书写方便,加上使用十进位制便于运算,逐渐在各国流行起来,成为世界各国通用的数字。阿拉伯数字在Unicode码中的位置是048到057。

扩展资料:

数字起源

公元500年前后,随着经济、种姓制度的兴起和发展,印度次大陆西北部的旁遮普地区的数学一直处于领先地位。

天文学家阿叶彼海特在简化数字方面有了新的突破:他把数字记在一个个格子里,如果第一格里有一个符号,比如是一个代表1的圆点,那么第二格里的同样圆点就表示十,而第三格里的圆点就代表一百。

这样,不仅是数字符号本身,而且是它们所在的位置次序也同样拥有了重要意义。以后,印度的学者又引出了作为零的符号。可以这么说,这些符号和表示方法是阿拉伯数字的老祖先了。

公元3世纪,古印度的一位科学家巴格达发明了阿拉伯数字。最古的计数目大概至多到3,为了要设想“4”这个数字,就必须把2和2加起来,5是2加2加1,3这个数字是2加1得来的,大概较晚才出现了用手写的五指表示5这个数字和用双手的十指表示10这个数字。

参考资料来源:百度百科-阿拉伯数字

数产生的历史演变过程是怎样的?

原始社会中,人们进行生存活动总要和野果、鱼等打交道,便逐渐形成了数的概念.刚开始,人们用脚趾和手指等来计数,但很快就发现不够用了,便又用石子来计数.但石子一颗颗的数也是很麻烦的,于是人们就用大一点的表示一定量的小石子.之后就又发明了算筹,可是算筹也不是很好使用的,就在树皮等物品上刻一些符号,久而久之,便演变成了数字.人们不断探索,才发明了二进制、十进制、六十进制等.

数学是怎么产生的,它的发展历史是什么

产生:数学起源于人类早期的生产活动,古巴比伦人从远古时代开始已经积累了一定的数学知识,并能应用实际问题

数学的发展史大致可以分为四个时期。

1、第一时期

数学形成时期,这是人类建立最基本的数学概念的时期。人类从数数开始逐渐建立了自然数的概念,简单的计算法,并认识了最基本最简单的几何形式,算术与几何还没有分开。

2、第二时期

数产生的历史演变过程是怎样的(数的产生数学史)

初等数学,即常量数学时期。这个时期的基本的、最简单的成果构成中学数学的主要内容。这个时期从公元前5世纪开始,也许更早一些,直到17世纪,大约持续了两千年。这个时期逐渐形成了初等数学的主要分支:算数、几何、代数。

3、第三时期

变量数学时期。变量数学产生于17世纪,经历了两个决定性的重大步骤:第一步是解析几何的产生;第二步是微积分(Calculus),即高等数学中研究函数的微分。

4、第四时期

现代数学。现代数学时期,大致从19世纪初开始。数学发展的现代阶段的开端,以其所有的基础--------代数、几何、分析中的深刻变化为特征。

扩展资料:

发展过程中研究出的数学成果:

1、李氏恒定式

数学家李善兰在级数求和方面的研究成果,在国际上被命名为李氏恒定式。

2、华氏定理

华氏定理是我国著名数学家华罗庚的研究成果。 华氏定理为:体的半自同构必是自同构自同体或反同体。 数学家华罗庚关于完整三角和的研究成果被国际数学界称为“华氏定理”;另外他与数学家王元提出多重积分近似计算的方法被国际上誉为“华—王方法”。

参考资料来源:百度百科-数学

百度百科-数学发展史

数产生的历史演变过程是怎样的的介绍就聊到这里吧,感谢你花时间阅读本站内容,更多关于数的产生数学史、数产生的历史演变过程是怎样的的信息别忘了在本站进行查找喔。

本文链接:https://bk.89qw.com/a-1403766

最近发表
网站分类