百科生活 投稿
关于【关于红移介绍】,什么是红移什么是蓝移,今天小编给您分享一下,如果对您有所帮助别忘了关注本站哦。
- 内容导航:
- 1、探索最遥远的星系
- 2、关于红移介绍
1、探索最遥远的星系
来源:人民网-人民日报
据《天体物理学杂志》近日发表的一项研究,一个国际天文学团队观测到了可能是迄今最遥远的星系,并命名为“HD1”。观测信号来自135亿光年之外,这意味着HD1诞生于宇宙大爆炸后约3亿年,是首批形成的星系。如果被证实,它将创造一个遥远星系的新纪录。
仰望星河,我们在地球上肉眼看到的绝大部分星星都来自银河系。而对于浩瀚的宇宙来说,像银河系这样的星系至少有数千亿个。光线传播需要时间,来自越遥远星系的信号,产生的时期越早。研究遥远的星系就像观测者穿越到古代,去观看一场历史的现场直播,吸引着天文学家孜孜以求。
现代天文学认为,宇宙始于约138亿年前的大爆炸,在那之后约38万年,膨胀的宇宙逐渐从高温致密的状态冷却下来,中性原子开始形成。这些原子气体进一步冷却,并在引力作用下聚集成团,慢慢形成第一代恒星和第一代星系,逐步演化至今。但天文学家还不确定的是,第一代天体具体形成的时间、物理性质、演化过程,以及对宇宙整体演化的影响等。通过搜寻越来越遥远的星系,天文学家获得了更多线索。在HD1被发现之前,最遥远星系的纪录由2016年发现的星系GN—z11保持,其信号来自宇宙大爆炸后约4亿年。
这些遥远的星系是如何被发现的?由于宇宙在膨胀,离地球越远的星系相对地球而言退行速度就越快,导致其辐射的光被观测到时会产生明显的红移,即波长会比原本更长。红移为1代表着波长变长1倍,红移越大表示距离越远。天文学家可依此计算出星系的距离,以及观测信号产生时宇宙所处的年龄。
而要精确确定一个星系的红移,天文学家需要获得该星系的光谱,然后通过测量光谱线波长的移动得出结果。原理不难理解,困难来自观测。通常,越遥远的星系越暗弱,需要用大口径望远镜等尖端观测设备长时间探测才可能发现。然而天空中暗弱的天体数目太多,像人口普查一样对每个暗弱天体拍光谱往往是不可能的,因此必须有效缩小探测范围。
好在对天空拍照的成本比拍光谱要低得多,观测者可以事先对特定天空长时间曝光拍照,从图像中遴选出特定目标,然后再用望远镜资源对其进行光谱观测。一个最常用的办法是搜寻那些只在长波图像有信号的源,因为越高红移的星系,其信号在越长的波长处才能探测到。HD1就是这样脱颖而出的“候选者”:据介绍,HD1是从昴星团望远镜、英国红外望远镜、维斯塔天文望远镜和斯皮策太空望远镜等观测的约70万个天体中选出。随后,观测者用位于智利的ALMA毫米波望远镜对HD1“聚焦”,探测到了一个可能的谱线,红移值为13.27。
需要强调的是,HD1的红移和距离仍有待进一步观测证实。2021年底发射的韦伯太空望远镜因在红外波段超高的灵敏度,将推动这一领域的革命性进步,可以拭目以待。
“天高地迥,觉宇宙之无穷。”对于宇宙边界的好奇和追问古来有之。如今,科学理论的进步打开了更多观察宇宙的视角,先进的观测设备将人类的视界延伸至更远,正带我们不断接近这一问题的答案。
(作者为中国科学技术大学天文学系教授)《 人民日报 》( 2022年06月10日 16 版)
2、关于红移介绍
[拼音]:hongyi
[外文]:red shift
天体光谱中某一谱线相对于实验室光源的比较光谱中同一谱线向红端的位移。红移z的定义是:
,
式中λ0是实验室光源的某一谱线波长,λ是天体的同一谱线波长。z>0,红移,波长增加;z<0,紫移(或蓝移),波长减少。在红移问题中,z都大于0,因而往往简单地把z作为红移的符号。z是无量纲的标量,习惯上又总是按照多普勒效应把z换算为相应的速度。
太阳的红移1907年哈姆发现太阳边缘有与自转无关的小量红移。两条铁谱线与日面中心的相比,红移了+0.012埃。同年,海耳和W.S.亚当斯指出,他们所观测的谱线在日面边缘都有红移;而且波长越长,红移越大。此后发现除红移外,还有谱线轮廓的复杂变化。现在,任何解释太阳谱线红移的理论必须同时能说明下列观测事实:
(1)日面中心的红移(绝对值)为广义相对论所预期的引力红移z的一半;
(2)红移从日面中心到边缘有变化,而且东边缘红移超出西边缘红移;
(3)谱线轮廓不对称性从日面中心到边缘的变化,特别是当到达边缘时不对称性消失;
(4)不同谱线的红移量之间存在一定的差别;有一些谱线的红移从日面中心到边缘没有变化,等于广义相对论红移。迄今对此还没有一种令人满意的解释。
电磁波经过太阳附近的红移“先驱者” 6号行星际探测器于1968年12月21日飞到太阳背后,当它为日冕所掩时,曾观测到它发射的 2,292兆赫频带的中心频率,除平均漂移外,可能有剩余红移。当金牛座T星接近于日掩时,也曾观测到中性氢21厘米谱线减小150赫。这些现象尚待进一步探索。
恒星的红移1868年哈根斯测量了一些恒星的视向速度,宣布天狼的红移为每秒47公里。1915年发现白矮星之后,人们通常认为白矮星的巨大剩余红移主要是引力红移。此外,在Of型星、沃尔夫-拉叶星、某些银河星团的成员星、猎户座大星云中的 B型星中也观测到反常红移(这里指不能用引力效应解释的红移)。目前,还没有恰当的理论揭示恒星红移的本原。
星系的红移除少数几个近距星系外,其他星系的光谱都呈现红移,而且用射电方法测定的红移与可见光波段一致。1929年,哈勃发现了星系的红移量和距离成正比的规律,即哈勃定律。到1978年,已观测到的正常星系最大红移z=0.75。若承认红移是多普勒退行速度效应,则能得出可观测的宇宙作整体膨胀的结论。星系的红移成为五十年来影响最为深远的宇宙现象。然而,还有很多观测事实,在探讨星系红移本原时应该计及。例如,在某些星系团中,旋涡星系的红移比椭圆星系的大,即存在所谓的星系类型-红移效应;一些双重星系和多重星系中,特殊成员星系有反常红移(这里指不满足哈勃定律的红移);霍金斯根据474个星系的红移-视星等关系,求出红移与距离的1.66次方成比例;沃库勒分析了118个星系群和星系团的平均红移和距离,认为红移与距离不是线性关系。
类星体的红移1963年,M.施米特等首次证认出类星体3C273的红移z=0.158。十五年来,已知的光学类星体有1,000多个,它们只有红移没有紫移,其中最大的红移z=3.53。若按正常星系的红移-距离关系外推,则遇到许多目前无法解决的矛盾。这就是六十年代以来著名的红移挑战。类星体的红移是根据1条以上的发射线测定的。谱线的证认是根据人们对于恒星和星系谱线形成机制先提出一份在类星体上可望出现的发射线参考表(1965年M.施米特首先发表的这种表,列有37条发射线,以后有人稍加扩充)及判定候选红移合理性的规则,然后把观测到的两条谱线的波长差与谱线参考表进行比对。一对谱线被证认的可能性不是唯一的,由此决定的红移可以相差极大;作为研究出发点的谱线证认参考表是否反映类星体的实际情况,也有关键性的意义。因此,当把类星体作为一种特殊重要天体来对待时,尤其需要注意到这一点。
1966年以来,得知有不少类星体光谱中有比发射线多得多的吸收线,有的还有一组以上的不同红移的吸收线系;此外,还有很多吸收线没有得到证认。吸收线红移一般小于发射线红移。通常认为,吸收线是在类星体周围的气体中,或是在视线方向介于观测者和类星体之间的星系、星系晕或星际物质中产生的。
类星体的红移和视星等之间没有明显的关系,这与正常星系的情况很不相同。1978年,沙鲁和萨普利根据626个类星体的红移-视星等图,得出的斜率是0.141,而哈勃线性律则要求斜率为0.2。
1966年,阿普发现有一些类星体与特殊星系成协,而类星体有较大的红移。后来这种情况陆续有所发现,类星体的不相符红移甚至有大出两个数量级的,这向传统的红移解释提出了严重的挑战。
红移和速度在经典多普勒效应中,引起谱线红移的仅是视线方向上的退行速度。在狭义相对论多普勒效应中,除径向退行外,横向速度也能引起红移,但比退行速度的红移小一级,可忽略不计。传统上把观测到的红移完全换算为径向退行速度。类星体巨大红移和不相符红移发现以后,横向速度引起的红移开始受到重视。若能观测到横向角速度(包括自行),则与保留横向速度项的相对论多普勒效应和哈勃定律联立求解,便可得到横向线速度和比单由哈勃定律得出的小得多的距离,并可把不相符红移解释为横向速度的差异。
星系和类星体的红移的解释二十年代,星系红移的研究曾受到德西特静态宇宙模型的推动,而星系速度-距离关系的发现,则成为宇宙膨胀的观测证据。以广义相对论为基础的宇宙膨胀假说不仅可以解释哈勃定律,还能说明一系列观测到的现象,例如微波背景辐射和奥伯斯佯谬,但不能解释不相符红移。半个世纪以来,人们提出了许多关于红移的非速度本原的解释,例如,光子老化说,物理常数变化理论。有人还试图用不均匀宇宙模型、多重爆炸宇宙学等来说明偏离哈勃定律的不相符红移,然而这些都是假说,没有得到公认。
- 参考书目
- A.Sandage ed.,Galaxies and the Universe,Univ.of Chicago Press,Chicago,1975.
参考文章
- 红移现象天文天体
本文关键词:红移说明什么,哪个属于红移,红移化学位移怎么变,什么叫红移,红移与紫移。这就是关于《关于红移介绍,什么是红移什么是蓝移(探索最遥远的星系)》的所有内容,希望对您能有所帮助!
- 最近发表