百科生活 投稿
关于【三角函数诱导公式大全表格】,三角函数公式表,今天小编给您分享一下,如果对您有所帮助别忘了关注本站哦。
- 内容导航:
- 1、三角函数诱导公式
- 2、三角函数诱导公式大全表格:三角函数公式表
1、三角函数诱导公式
三角函数诱导公式
注意:在做题时,将a看成锐角来做会比较好做。
诱导公式记忆口诀
※规律总结※
上面这些诱导公式可以概括为:
对于π/2*k ±α(k∈Z)的三角函数值
然后在前面加上把α看成锐角时原函数值的符号。
例如:
sin(2π-α)=sin(4·π/2-α),k=4为偶数,所以取sinα。
当α是锐角时,2π-α∈(270°,360°),sin(2π-α)<0,符号为“-”。
所以sin(2π-α)=-sinα
上述的记忆口诀是:
奇变偶不变,符号看象限。
公式右边的符号为把α视为锐角时,角k·360°+α(k∈Z),-α、180°±α,360°-α
所在象限的原三角函数值的符号可记忆
水平诱导名不变;符号看象限。
各种三角函数在四个象限的符号如何判断,也可以记住口诀
2、三角函数诱导公式大全表格:三角函数公式表
角函数是数学中属于初等函数中的超越函数的一类函数。它们的本质是任何角的集合与一个比值的集合的变量之间的映射。通常的三角函数是在平面直角坐标系中定义的。其定义域为整个实数域。另一种定义是在直角三角形中,但并不完全。现代数学把它们描述成无穷数列的极限和微分方程的解,将其定义扩展到复数系。接下来我们来看下三角函数公式表。
操作方法
sin30°=1/2 sin45°=√2/2 sin60°=√3/2
cos30°=√3/2 cos45°=√2/2 cos60°=1/2
tan30°=√3/3 tan45°=1 tan60°=√3
cot30°=√3 cot45°=1 cot60°=√3/3
sin15°=(√6-√2)/4 sin75°=(√6+√2)/4 cos15°=(√6+√2)/4
cos75°=(√6-√2)/4(这四个可根据sin(45°±30°)=sin45°cos30°±cos45°sin30°得出)
sin18°=(√5-1)/4 (这个值在高中竞赛和自招中会比较有用,即黄金分割的一半)
正弦定理:在△ABC中,a / sinA = b / sin B = c / sin C = 2R (其中,R为△ABC的外接圆的半径。
三角函数的诱导公式(六公式)
公式一:
sin(α+k*2π)=sinα cos(α+k*2π)=cosα tan(α+k*2π)=tanα
公式二:
sin(π+α) = -sinα cos(π+α) = -cosα tan(π+α)=tanα
公式三:
sin(-α) = -sinα cos(-α) = cosα tan (-α)=-tanα
公式四:
sin(π-α) = sinα cos(π-α) = -cosα tan(π-α) =-tanα
公式五:
sin(π/2-α) = cosα cos(π/2-α) =sinα
由于π/2+α=π-(π/2-α),由公式四和公式五可得
公式六:
sin(π/2+α)= cosα cos(π/2+α) = -sinα sin(π/2+α)= cosα
cos(π/2+α)= -sinα tan(π/2+α)= -cotα cot(π/2+α)= -tanα
sin(π/2-α)= cosα cos(π/2-α)= sinα tan(π/2-α)= cotα
cot(π/2-α)= tanα sin(3π/2+α)= -cosα cos(3π/2+α)= sinα
tan(3π/2+α)= -cotα cot(3π/2+α)= -tanα sin(3π/2-α)= -cosα
cos(3π/2-α)= -sinα tan(3π/2-α)= cotα cot(3π/2-α)= tanα
诱导公式记背诀窍:奇变偶不变,符号看象限。
和(差)角公式
三角和公式
sin(α+β+γ)=sinα·cosβ·cosγ+cosα·sinβ·cosγ+cosα·cosβ·sinγ-sinα·sinβ·sinγ
cos(α+β+γ)=cosα·cosβ·coscγ-osα·sinβ·sinγ-sinα·cosβ·sinγ-sinα·sinβ·cosγ
tan(α+β+γ)=(tanα+tanβ+tanγ-tanα·tanβ·tanγ)/(1-tanα·tanβ-tanβ·tanγ-tanα·tanγ)
(α+β+γ≠π/2+2kπ,α、β、γ≠π/2+2kπ)
积化和差的四个公式
sina*cosb=(sin(a+b)+sin(a-b))/2
本文关键词:初中常用三角函数公式表,三角函数公式表格初中,三角函数公式表格,三角函数公式表格30 45 60,直角三角函数公式表。这就是关于《三角函数诱导公式大全表格,三角函数公式表(三角函数诱导公式)》的所有内容,希望对您能有所帮助!
- 最近发表