百科游戏 手游攻略
初一上册数学期末试卷及答案。
一、选一选,比比谁细心(本大题共12小题,每小题3分,共36分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.的绝对值是().(A)(B)(C)2(D)-22.武汉长江二桥是世界上第一座弧线形钢塔斜拉桥,该桥全长16800m,用科学记数法表示这个数为().(A)1.68×104m(B)16.8×103m(C)0.168×104m(D)1.68×103m3.如果收入15元记作+15元,那么支出20元记作()元.(A)+5(B)+20(C)-5(D)-204.有理数,,,,-(-1),中,其中等于1的个数是().(A)3个(B)4个(C)5个(D)6个5.已知p与q互为相反数,且p≠0,那么下列关系式正确的是().(A)(B)(C)(D)6.方程5-3x=8的解是().(A)x=1(B)x=-1(C)x=(D)x=-7.下列变形中,不正确的是().(A)a+(b+c-d)=a+b+c-d(B)a-(b-c+d)=a-b+c-d(C)a-b-(c-d)=a-b-c-d(D)a+b-(-c-d)=a+b+c+d8.如图,若数轴上的两点A、B表示的数分别为a、b,则下列结论正确的是().Ab10-1aB(A)b-a>0(B)a-b>0(C)ab>0(D)a+b>09.按括号内的要求,用四舍五入法,对1022.0099取近似值,其中错误的是().(A)1022.01(精确到0.01)(B)1.0×103(保留2个有效数字)(C)1020(精确到十位)(D)1022.010(精确到千分位)10.“一个数比它的相反数大-4”,若设这数是x,则可列出关于x的方程为().(A)x=-x+4(B)x=-x+(-4)(C)x=-x-(-4)(D)x-(-x)=411.下列等式变形:①若,则;②若,则;③若,则;④若,则.其中一定正确的个数是().(A)1个(B)2个(C)3个(D)4个12.已知、互为相反数,、互为倒数,等于-4的2次方,则式子的值为().(A)2(B)4(C)-8(D)8二、填一填,看看谁仔细(本大题共4小题,每小题3分,共12分,请将你的答案写在“_______”处)13.写出一个比小的整数:.14.已知甲地的海拔高度是300m,乙地的海拔高度是-50m,那么甲地比乙地高____________m.原价:元国庆节8折优惠,现价:160元15.十一国庆节期间,吴家山某眼镜店开展优惠学生配镜的活动,某款式眼镜的广告如图,请你为广告牌补上原价.16.小方利用计算机设计了一个计算程序,输入和输出的数据如下表:输入…12345…输出……那么,当输入数据为8时,输出的数据为.三、解一解,试试谁更棒(本大题共9小题,共72分)17.(本题10分)计算(1)(2)解:解:18.(本题10分)解方程(1)(2)解:解:19.(本题6分)某工厂一周计划每日生产自行车100辆,由于工人实行轮休,每日上班人数不一定相等,实际每日生产量与计划量相比情况如下表(以计划量为标准,增加的车辆数记为正数,减少的车辆数记为负数):星期一二三四五六日增减/辆-1+3-2+4+7-5-10(1)生产量最多的一天比生产量最少的一天多生产多少辆?(3分)(2)本周总的生产量是多少辆?(3分)解:20.(本题7分)统计数据显示,在我国的座城市中,按水资源情况可分为三类:暂不缺水城市、一般缺水城市和严重缺水城市.其中,暂不缺水城市数比严重缺水城市数的3倍多52座,一般缺水城市数是严重缺水城市数的倍.求严重缺水城市有多少座?解:21.(本题9分)观察一列数:1、2、4、8、16、…我们发现,这一列数从第二项起,每一项与它前一项的比都等于2.一般地,如果一列数从第二项起,每一项与它前一项的比都等于同一个常数,这一列数就叫做等比数列,这个常数就叫做等比数列的公比.(1)等比数列5、-15、45、…的第4项是_________.(2分)(2)如果一列数是等比数列,且公比为.那么有:,,则:=.(用与的式子表示)(2分)(3)一个等比数列的第2项是10,第4项是40,求它的公比.(5分)解:全球通神州行月租费50元/分0本地通话费0.40元/分0.60元/分22.(本题8分)两种移动电话记费方式表(1)一个月内本地通话多少分钟时,两种通讯方式的费用相同?(5分)(2)若某人预计一个月内使用本地通话费180元,则应该选择哪种通讯方式较合算?(3分)解:23.(本题10分)关于x的方程与的解互为相反数.(1)求m的值;(6分)(2)求这两个方程的解.(4分)解:24.(本题12分)如图,点A从原点出发沿数轴向左运动,同时,点B也从原点出发沿数轴向右运动,3秒后,两点相距15个单位长度.已知点B的速度是点A的速度的4倍(速度单位:单位长度/秒).(1)求出点A、点B运动的速度,并在数轴上标出A、B两点从原点出发运动3秒时的位置;(4分)解:(2)若A、B两点从(1)中的位置开始,仍以原来的速度同时沿数轴向左运动,几秒时,原点恰好处在点A、点B的正中间?(4分)解:(3)若A、B两点从(1)中的位置开始,仍以原来的速度同时沿数轴向左运动时,另一点C同时从B点位置出发向A点运动,当遇到A点后,立即返回向B点运动,遇到B点后又立即返回向A点运动,如此往返,直到B点追上A点时,C点立即停止运动.若点C一直以20单位长度/秒的速度匀速运动,那么点C从开始运动到停止运动,行驶的路程是多少个单位长度?(4分)解:2006-2007学年度上学期七年级数学期中考试参考答案与评分标准一、选一选,比比谁细心1.A2.C3.D4.B5.C6.B7.C8.A9.A10.B11.B12.D二、填一填,看看谁仔细13.-1等14.35015.20016.三、解一解,试试谁更棒17.(1)解:=-48+8-36………………………………3分=-76………………………………5分(2)解:=1×2+(-8)÷4………………………………2分=2-2=0………………………………5分18.(1)解:3x+2x=32-7………………………………2分5x=25………………………………4分x=5………………………………5分(2)解:………………………………2分=2………………………………4分x=-6………………………………5分19.解:(1)7-(-10)=17………………………………3分(2)(-1+3-2+4+7-5-10)+100×7=696………………………………6分20.解:设严重缺水城市有x座,依题意有:………………………………1分………………………………4分解得x=102………………………………6分答:严重缺水城市有102座.………………………………7分21.(1)81……2分(2)…………………4分(3)依题意有:………………………………6分∴40=10×∴=4………………………………7分∴……………………………9分22.(1)设一个月内本地通话t分钟时,两种通讯方式的费用相同.依题意有:50+0.4t=0.6t………………………………3分解得t=250………………………………4分(2)若某人预计一个月内使用本地通话费180元,则使用全球通有:50+0.4t=180∴=325………………………………6分若某人预计一个月内使用本地通话费180元,则使用神州行有:0.6t=180∴=300∴使用全球通的通讯方式较合算.………………………………8分23.解:(1)由得:x=…………………………2分依题意有:+2-m=0解得:m=6………………………6分(2)由m=6,解得方程的解为x=4……………8分解得方程的解为x=-4………………………10分24.(1)设点A的速度为每秒t个单位长度,则点B的速度为每秒4t个单位长度.依题意有:3t+3×4t=15,解得t=1…………………………2分∴点A的速度为每秒1个单位长度,点B的速度为每秒4个单位长度.…3分画图……………4分(2)设x秒时,原点恰好处在点A、点B的正中间.………………5分根据题意,得3+x=12-4x………………7分解之得x=1.8即运动1.8秒时,原点恰好处在A、B两点的正中间………………8分(3)设运动y秒时,点B追上点A根据题意,得4y-y=15,解之得y=5………………10分即点B追上点A共用去5秒,而这个时间恰好是点C从开始运动到停止运动所花的时间,因此点C行驶的路程为:20×5=100(单位长度)………………12分
初一数学题试卷及答案
导语:数学题是透过抽象化和逻辑推理的使用,由计数、计算、量度和对物体形状及运动的观察中产生的。以下是初一数学题试卷及答案,提供给大家学习!
初一数学题试卷及答案一、选择题(30分)
1、3022的相反数是()
A.3022;B.-3022;C.;D.;
2、下列说法正确的是()
A.绝对值是本身的数是正数;B.倒数是本身的数是±1;
C.平方是它本身的数是0;D.立方等于本身的数是±1;
3、若a<0,b>0,则b,b+a,b-a中最大的一个数是()
A.b-a;B.b+a;C.a;D.不能确定;
4、过度包装既浪费资源又污染环境,据测算,如果全国每年减少10﹪的过度包装纸用量,那么可减排二氧化碳3120000吨,这个数用科学记数法表示为()
A.3.12×105;B.3.12×106;C.31.2×105;D.0.312×107;
5、若关于x的方程3x+5=m与x-2m=5有相同的解,则x的值是()
A.3;B.-3;C.4;D.-4;
6、甲以5千米/小时得速度先走16分钟,乙以13千米/小时得速度追甲,则乙追上甲的时间为多少小时()
A.10;B.6;C.;D.;
7、下面式子去括号正确的是()
A.;B.;
C.;D.;
8、下列说法真情的是()
A.直线AB和直线BA是两条直线;B.射线AB和射线BA是两条射线;C.线段AB和线段BA是两条线段;D.直线AB和直线a不能是同一条直线;
9、如果∠α和∠β互补,且∠α>∠β,则下列表示∠β的余角的式子中:
①90°-∠β;②∠α-90°;③(∠α+∠β);④(∠α-∠β)正确的有()
A.4个;B.3个;C.2个;D.1个;
10、中国湖南“崀山旅游节”开幕的当天,从早晨8:00开始每小时进入景区的游客人数约为1000人,同时每小时走出景区的人数约为600人,已知崀山景区游客的饱和人数约为2000人,那么开幕当天该景区的游客人数饱和的时间约为()
A.10:00;B.12:00;C.13:00;D.16:00;
二、填空题(24分)
11、计算:0×(-2)-7=。
12、据中新网上海6月1日电:世博会开园一个月来,客流平稳,累计当晚19时,参观者已超过8000000人次,用科学记数法表示8000000=。
13、如图,整个圆表示某班参加课外活动的总人数,
跳绳的人数占30﹪,表示踢毽子的扇形圆心角是60°,
踢毽子和打篮球的人数比是1:2,那么表示参加“其它”
活动的人数占总人数的﹪。
14、。
15、某种苹果的售价是每千克x元,用面值为100元的人民币
购买了5千克,应找回元。
16、已知∠A与∠B互余,若∠A=70°,则∠B的度数为。
17、如图,若CB=4cm,DB=7cm,
且D是AC的中点,则AC=。
18、用黑白两种颜色的正方形纸片拼成如下一列图案,按规律排列的第10个
图案中有白纸片张。
三、解答题(22分)
19、(6分)计算:
20、(8分)解方程:
21、(8分)设,,
若,且B-2A=a,求a的值。
四、应用题(24分)
22、(8分)某中学团委开展“关爱残疾儿童”爱心捐书活动,全校师生踊跃捐赠各类书籍共3000本,为了解各类书籍的分布情况,从中随机抽取部分书籍分四类进行统计:A.艺术类;B.文学类;C.科普类;D.其他。并将统计结果绘制成如图所示的两幅不完整的统计图:
(1)这次统计共抽取了本书籍,扇形统计图中的m=,∠α的度数是。
(2)请将条形统计图补充完整。
(3)估计全校师生共捐多少本文学类书籍?
23、(8分)以“开放崛起,绿色发展”为主题的第七届“中博会”于2012年5月20日在湖南长沙圆满落幕。作为东道主的湖南省一共签订了境外与省外境内投资合作项目共348个,其中境外投资合作项目个数的2倍比省外境内投资合作项目多51个。
(1)求湖南省签订的境外与省外境内的投资合作项目分别有多少个?
(2)若境外、省外境内的投资合作项目平均每个项目引进资金分别为6亿元,7.5亿元,求这次“中博会”中,东道主湖南省共引进资金多少亿元?
24、(8分)(1)如图,点C在线段AB上,线段AC=6cm,BC=4cm,点M、N分别是AC、BC的`中点,求线段MN的长?
(2)根据(1)的计算过程和结果,设AC+BC=a,其他条件不变,你能猜出MN的长度吗?用一句话表述你发现的规律?
(3)对于(1),如果叙述为:“已知线段AC=6cm,BC=4cm,点C在直线AB上,点M、N分别是AC、BC的中点,求线段MN的长?”结果会有变化吗?如果有,求出结果。
五、综合题(20分)
25、(10分)已知点O是直线AB上一点,∠COE=90°,OF是∠AOE的平分线,
(1)当点C、E、F在直线AB的同侧(如图①所示)时,试说明∠BOE=2∠COF;
(2)当点C与点E、F在直线AB的两旁(如图②所示)时,(1)中的结论是否仍然成立?请给出你的结论,并说明理由。
(3)将如图②中的射线OF绕O点顺时针旋转m°(0<m<180),得到射线OD,设∠AOC=n°,若∠BOD=°,则∠DOE的度数是多少?(用含n的式子表示)
26、(10分)“十一”期间,李平、王丽等同学随家长一同到某公园游玩,下面是购买门票时,李平与他爸爸的对话,试根据图中信息,解答下列问题:
(1)李平他们一共去了几个成人?几个学生?
(2)请你帮助算一算,用哪种方式购票更省钱?说明理由。
(3)购完票后,李平发现张明等8位同学和他们的12名家长共20人也来购票,请你为他们设计出更省钱的购票方案,并求出此时的购票费用。
参考答案:
一、选择题:1、B;2、B;3、A;4、B;5、B;6、C;
7、C;8、B;9、B;10、C;
二、填空题:11、-7;12、8×106;13、20;14、5xy2-3x2y;15、100-5x;
16、20°;17、6cm;18、31;
三、解答题:19、0;20、x=-8;
21、B-2A=-2()=7x-5y
由可得:x=2a,y=3;B-2A=7x-5y=-14a-15=a,解得a=-1
四、应用题22、(1)40÷20﹪=200;80÷200=0.4=40﹪;°
(2)B的本数:200-40-80-20=60,作图略:
(3)3000×=900(本)
23、(1)设境外投资合作项目x个,得:2x-(348-x)=51,解得:x=133
故省外境内的投资合作项目:348-133=215(个)答:略
(2)引进资金总额:133×6+215×7.5=2410.5(亿元)答:略
24、(1)MN=5cm,(2)MN=a.
(3)会有变化。当C点在线段AB上时,MN=5cm;
当C点在线段AB的延长线上时,MN=1cm;
五、综合题:25、(1)如图①,设∠COF=α,则∠EOF=90°-α
因为,OF是∠AOE的平分线,∠AOF=∠EOF=90°-α
所以,∠AOC=(90°-α)-α=90°-2α
∠BOE=180°-∠COE-∠AOC=180°-90°-(90°-2α)=2α,即∠BOE=2∠COF;
(2)成立。如图②,设∠AOC=β,则∠AOF=,
所以∠COF=∠AOC+∠AOF=β+=(90°+β)
而∠BOE=180°-∠AOE=180°-(90°-β)=90°+β,即∠BOE=2∠COF;
(3)因为∠DOE=180°-∠AOE-∠BOD=180°-(90°-n°)-°=°
26、(1)设成人x人,则学生(12-x)人,得:35x+35×0.5(12-x)=350
解得:x=8,所以学生有4人。
(2)如果购买团体票:35×0.6×16=336(元),故采用购团体票的方式省钱。
(3)最省钱的方式是:买16人团体票,再买4人学生票。
购票费用:35×0.6×16+4×35×0.5=406(元).
初一上册数学期末试卷答案
一.精心选一选,你一定能行!(每题3分,共24分)
1.的绝对值是()
A.-3B.C.3D.
2.下列计算正确的是()
A.B.C.D.
3.下列关于单项式的说法中,正确的是()
A.系数是1,次数是2B.系数是,次数是2
C.系数是,次数是3D.系数是,次数是3
4.下列说法错误的是()
A.长方体、正方体都是棱柱B.三棱柱的侧面是三角形
C.直六棱柱有六个侧面、侧面为长方形D.球体的三种视图均为同样大小的图形
5.某商场有两件进价不同上衣均卖了80元,一件盈利60%,另一件亏本20%,这次买卖中商家()
A.赚了10元B.赚了8元C.不赔不赚D.赚了32元
6.下列图形是一个正方体表面展开图的是()
7.如图,B是线段AD的中点,C是BD上一点则下列结论中错误的是()
A.BC=AB-CDB.BC=(AD-CD)
C.BC=AD-CDD.BC=AC-BD
8.某市今年共有7万名考生参加中考,为了了解这7万名考生的数学成绩,从中抽取了
1000名考生的数学成绩进行统计分析.以下说法正确的有()个
A.2B.3C.4D.0
①这种调查采用了抽样调查的方式②7万名考生是总体
③1000名考生是总体的一个样本④每名考生的数学成绩是个体
二.耐心填一填(每题3分,共24分)
9.目前国内规划中的第一高楼上海中心大厦,总投入约14800000000元.14800000000元用科学记数法表示为.
10.如果x=2是方程mx-1=2的解,那么m=.
11.如图,从点A到B有a,b,c三条通道,最近的一条
通道是,这是因为.
12.某校女生占全体学生总数的52%,比男生多80人.若设这个学校的学生数为x,那么可出列方程.
13.如果代数式3x-8y的值为2010,那么代数式2(x+6y)-8(x-y)-4-4y的值为.
14.19时45分时,时钟的时针与分针的夹角是.
15.若、互为相反数,、互为倒数,,则______.
16.下列事件中,哪些是必然事件,哪些是不可能事件,哪些是可能事件?
(1)掷骰子掷得2点是;
(2)同号两数相乘积为负数是;
(3)互为相反数的两数相加为零是.
三、细心做一做(17题8分、18题10分)
17.计算:(每小题4分,共8分)
(1)(2)(-2)2+(-2)(-)+(-24)
18.先化简,后求值(每小题5分,共10分)
(1),其中a=-.
(2)2x-y-(2y2-x2)-5x+y+(x2+2y2),x=-1,y=1.
四、沉着冷静,周密考虑(19题10分、20题10分)
19.解方程:(每小题5分,共10分)
(1)(2)-1=
20.(10分)根据要求完成下列题目:
(1)图中有块小正方体;
(2)请在下面分别画出它的主视图,左视图和俯视图.
五.(21、22题各10分)
21.(10分)七年级一班部分同学参加全国希望杯数学邀请赛,取得了优异成绩,指导教师统计所有参赛同学的成绩(成绩为整数,满分150分)并绘制了统计图如下图所示(注:图中各组中不包含最高分).
请回答:
(1)该班参加本次竞赛同学有多少人?
(2)如果成绩不低于110分的同学获奖,那么该班参赛同学获奖率是多少?
(3)参赛同学有多少人及格?(成绩不低于总成绩的60%为及格)
22.(10分)下面是小马虎解的一道题:
题目:在同一平面上,若BOA=70,BOC=25,求AOC的度数.
解:根据题意可画出图形
∵AOC=BOA-BOC
=70-25
=45
AOC=45
若你是老师,会判小马虎满分吗?
若会,说明理由.若不会,请将小马虎的错误指出,并给出你认为正确的解法.
六.开动脑筋,再接再厉(23、24题各10分)
23.(10分)有一挖宝游戏,有一宝藏被随意藏在下面圆形区域内,(圆形区域被分成八等份)如图1.
(1)假如你去寻找宝藏,你会选择哪个区域(区域1;区域2;区域3)?为什么?在此区域一定能够找到宝藏吗?
(2)宝藏藏在哪两个区域的可能性相同?
(3)如果埋宝藏的区域如图2(图中每个方块完全相同),(1)(2)的.结果又会怎样?
24.(10分)A、B两地相距64千米,甲从A地出发,每小时行14千米,乙从B地出发,每小时行18千米.
(1)若两人同时出发相向而行,则需经过几小时两人相遇?
(2)若甲在前,乙在后,两人同时同向而行,则几小时后乙超过甲10千米?
七.应用知识解决问题
25.(14分)某地生产一种绿色蔬菜,若在市场上直接销售,每吨利润为1000元;经粗加工后销售,每吨利润可达4500元;经精加工后销售,每吨利润涨至7500元.当地一家农工商公司收获这种蔬菜140吨,该公司加工的生产能力是:如果对蔬菜进行粗加工,每天可加工16吨;如果进行精加工,每天可加工6吨,但两种加工方式不能同时进行.受季节等条件限制,公司必须在15天内将这批蔬菜全部销售或加工完毕,为此公司研制了三种可行方案.
方案一:将蔬菜全部进行粗加工;
方案二:尽可能多地对蔬菜进行精加工,没有来得及进行加工的蔬菜,在市场上直接销售;
方案三:将部分蔬菜进行精加工,其余蔬菜进行粗加工,并恰好15天完成.
你认为选择哪种方案获利最多?为什么?
八.充满信心,成功在望
26.(每小题5分共10分)
(一)观察下图,回答下列问题:
(1)在AOB内部画1条射线OC,则图中有个不同的角;
(2)在AOB内部画2条射线OC,OD,则图中有个不同的角;
(3)在AOB内部画3条射线OC,OD,OE则图中有个不同的角;
(4)在AOB内部画10条射线OC,OD,OE则图中有个不同的角;
(5)在AOB内部画n条射线OC,OD,OE则图中有个不同的角.
(二)观察下列等式:
则
并请你将想到的规律用含有(是正整数)的等式来表示
就是:_____________________.
参考答案:
题号12345678
答案CDDBACBA
9.1.481010元10.11.b,两点之间线段最短
17.(1)解:原式=(-48)+(-48)-(-48)+(-48)--------------2分
=-8+(-)-(-12)+(-4)------------------------------------------3分
=-8-+12-4
=--------------------------------------------------------------------------4分
(2)解:原式=4+(-2)(-)+(-16)---------------------------2分
=4+3-1--------------------------------------------------------------3分
=6--------------------------------------------------------------------4分
18.(1)解:5a2-3a+6-4a2+7a,
=5a2-4a2+(-3a+7a)+6
=a2+4a+6------------------------------------------------------------------2分
当a=-时,
原式=(-)2+4(-)+6-----------------------------------------4分
=-2+6
=------------------------------------------------------------------5分
(2)解:2x-y-(2y2-x2)-5x+y+(x2+2y2),
=2x-y-2y2+x2-5x+y+x2+2y2
=(2x-5x)+(-y+y)+(-2y2+2y2)+(x2+x2)
=-3x+2x2-----------------------------------------------------2分
当x=-1,y=1时,
原式=-3(-1)+2(-1)2-------------------------------------------4分
=3+2
=5-------------------------------------------5分
(2)解:去分母得:3(3x-1)-12=2(5x-7)2分
去括号得:9x-3-12=10x-143分
移项得:9x-10x=-14+3+124分
合并同类项得:-x=1
方程两边除以-1得:x=-15分
20.6块-------------------------2分
主视图----5分左视图------8分俯视图---10分
21.(1)3+6+8+2+1=20人
因此该班参加本次竞赛同学有20人.--------------------------------------------------3分
(2)(2+1)20100%=15%
因此该班参赛同学获奖率是15%-----------------------------------6分
(3)8+2+1=11人
因此参赛同学有11人及格---------------------------------------------------------10分
22.解:小马虎不会得满分的。----------2分
小马虎考虑的问题不全面,除了上述问题BOC在BOA内部以外,
还有另一种情况BOC在BOA的外部.--------------5分
解法如下:根据题意可画出图形(如图),--------------6分
∵AOC=BOA+BOC
=70+25
=95
AOC=95--------------8分
综合以上两种情况,AOC=45或95.------10分
23.解:答:(1)会选择区域3;区域1和区域2的可能性是、区域3的可能性是,藏在区域3的可能性大;在此区域也不一定能够找到宝藏,因为区域3的可能性是,不是1.(只要说出谁的可能性大可酌情给分)------------------------------6分
24.解:(1)若两人同时出发相向而行,
设需经过X小时两人相遇,根据题意得:------------------------------1分
14X+18X=64------------------------------3分
解得:X=2-----------------------------4分
因此,若两人同时出发相向而行,则需经过2小时两人相遇.-----5分
(2)若甲在前,乙在后,两人同时同向而行,
设Y小时后乙超过甲10千米,根据题意得:
18Y-14Y=64+10--------------------------------8分
解得:Y=18.5--------------------------------9分
因此,若甲在前,乙在后,两人同时同向而行,则18.5小时后乙超过甲10千米
---------------------------------10分
25.解:方案一:获利为(元),-----------------3分
方案二:15天可精加工(吨),说明还有50吨需要在市场直接销售,
故可获利(元)--------------7分
方案三:可设将吨蔬菜进行精加工,将吨进行粗加工,
依题意得,--------------------10分
解得,--------------------12分
故获利(元),---------------13分
综上,选择方案三获利最多。---------------------14分
26.1.(1)3;(2)6;(3)10;(4)1+2+3++10+11=66;------------4分
(5)1+2+3++n+(n+1)=;-------------------------------7分
2.8--------------------------------------------------8分
1+3+5+7++(2n-1)=n2----------------------------------10分
- 最近发表