手机版

百科游戏 手游攻略

三角形内角和教学设计,《三角形内角和》教学设计

百科 2026-02-10 00:27:14 手游攻略 阅读:1153次

《三角形内角和》教学设计

【教学目标】

1、学生动手操作,通过量、剪、拼、折的方法,探索并发现“三角形内角和等于180度”的规律。

2、在探究过程中,经历知识产生、发展和变化的过程,通过交流、比较,培养策略意识和初步的空间思维能力。

3、体验探究的过程和方法,感受思维提升的过程,激发求知欲和探索兴趣。

【教学重点】探究发现和验证“三角形的内角和180度”这一规律的过程,并归纳总结出规律。

【教学难点】对不同探究方法的指导和学生对规律的灵活应用。

【教具准备】课件、表格、学生准备不同类型的三角形各一个,量角器。

【教学过程】

一、激趣引入。

1、猜谜语

师:同学们喜欢猜谜语吗?

生:喜欢。

师:那么,下面老师给大家出个谜语。请听谜面:

形状似座山,稳定性能坚,三竿首尾连,学问不简单。(打一图形)大家一起说是什么?

生:三角形

2、介绍三角形按角的分类

师:真聪明!!板书“三角形”!那么,三角形按角分可以分为钝角三角形、直角三角形和锐角三角形这几类

师分别出示卡片贴于黑板。

3、激发学生探知心里

师:大家会不会画三角形啊?

生:会

师:下面请你拿出笔在本子上画出一个三角形,但是我有个要求:画出一个有两个直角的三角形。试一试吧!

生:试着画

师:画出来没有?

生:没有

师:画不出来了,是吗?

生:是

师:有两个直角的三角形为什么画不出来呢?这就是三角形中角的奥秘!这节课我们就来学习有关三角形角的知识“三角形内角和”(板书课题)

二、探究新知。

1、认识三角形的内角

看看这三个字,说说看,什么是三角形的内角?

生:就是三角形里面的角。

师:三角形有几个内角啊?

生:3个。

师:那么为了研究的时候比较方便,我们把这三个内角标上角1角2角3,请同学们也拿出桌子上三角形标出(教师标出)

师:你知道什么是三角形“内角和”吗?

生:三角形里面的角加起来的度数。

2、研究特殊三角形的内角和

师:分别拿出一个直角三角板,请同学们看看这属于什么三角形,说出每个角的度数,那这个三角形的内角和是多少度?

生:算一算:90°+60°+30°=180°90°+45°+45°=180°

师:180°也是我们学习过的什么角?

生:平角

师:从刚才两个三角形的内角和的计算中,你发现了什么?

3、研究一般三角形的内角和

师:猜一猜,其它三角形的内角和是多少度呢?

生:

4、操作、验证

师:同学们猜的结果各不相同,那怎么办呀?你能想个办法验证一下吗?

要求:

(1)每4人为一个小组。

(2)每个小组都有不同类型的`三角形,每种类型都需要验证,先讨论一下,怎样才能较快的完成任务?

(3)验证的方法不只一种,同学们要多动动脑子。

师:好,开始活动!

师:巡视指导

师:好!请一组汇报测量结果。

生:通过测量我们发现每个三角形的三个内角和都在180度左右。

师:其实三角形的内角和就是180度,只是因为我们在测量时存在了一些误差,所以测量出的结果不准确。

生:我是用撕的方法,把直角三角形三个内角撕下来,拼在一起,拼成一个平角,是180度。

师:好!非常好!

师:有其它同学操作锐角三角形和钝角三角形的吗?谁愿意到前面来展示一下?生:展示锐角三角形(撕拼)

生:展示折一折我是用折的方法把锐角三角形三个角折在一起,组成一个平角,是180°。

师:老师也做了一个实验看一看是不是和大家得到结果一样呢?(多媒体展示)

现在老师问同学们,三角形的内角和是多少?

生:180度。

师:通过验证:我们知道了无论是锐角三角形,直角三角形还是钝角三角形,它们的内角和都是180°。板书:三角形内角和等于180度。现在让我们用自豪的、肯定的语气读出我们的发现:“三角形的内角和是180°”。

三、解决疑问

师:好!请同学们回忆一下,刚才课前老师让同学们画出有两个直角的三角形画出来了吗?

生:没有

师:那你能用这节课的知识解释一下为什么画不出来吗?

生:两个直角是180度,没有第三个角了。

师:如果想画出有两个角是钝角的三角形你能画出来吗?

生:大于180度,也画不出第三个角。师:所以,生活中不存在这样的三角形。

师:学会了知识,我们就要懂得去运用。

四、巩固提高。

1、填空。

(1)三角形的内角和是()度。

(2)一个三角形的两个内角分别是80°和75°,它的另一个角是()。

2、求下面各角的度数。

(1)∠1=27°∠2=53°∠3=()这是一个()三角形。

(2)∠1=70°∠2=50°∠3=()这是一个()三角形。

3、判断每组中的三个角是不是同一个三角形中的三个内角。

(1)80°95°5°()

(2)60°70°90°()

(3)30°40°50°()

4、红领巾是一个等腰三角形,求底角的度数。(多媒体出示)

对学生进行思品教育。

5、思考延伸。

根据三角形内角和是180度,算一算四边形和八边形的内角和是多少?

6、游戏:帮角找朋友每组卡片中,哪三个角可以组成三角形?)每组卡片中,哪三个角可以组成三角形?)60°90°45°30°⑴60°、90°、45°、30°54°46°52°

五、总结。

求小学数学<三角形内角和>教学设计

《三角形的内角和》的教学设计:教学内容:人教版四年级下册第85页例5。三维目标:知识技能:1.通过测量、剪拼和折拼等方法,渗透“转化”的思想,探索和发现三角形内角的度数和等于1800。2.会用新学知识解决一些相关的数学问题。3.积累一些认识图形的经验和方法。过程与方法:主要通过动手实验法探索新知。情感态度与价值观:在探索中体现发现的乐趣,增强学好数学的信心。重难点、关键:1.重点:探索和发现三角形内角的度数和等于1800。2.难点:通过操作活动探索和发现任意三角形内角的度数和等于1800,并加以验证,进一步感受结论是真实、正确的。3.关键:要让学生通过自主探索发现三角形内角的度数和等于1800。教学过程:一、创设情境、引出课题1.借助等腰直角三角形初步感知内角和。教师:(出示等腰直角三角板)这是一个三角板,有几个内角?【3个】每个内角各是多少度?【∠1=45°,∠2=45°,∠3=90°】三个内角一共多少度?【45°+45°+90°=180°】2.引出课题。教师:把三个内角的度数相加就是三角形的内角和。这节课我们继续来研究三角形,学习三角形的内角和。揭示课题:三角形的内角和3.加深印象。教师:我们已知一副三角板其中一个内角和是180°,那么另一个呢?【出示另一个三角板】它的内角和又是多少度呢?【180°】为什么?【∠1=300,∠2=600,∠3=900,300+600+900=1800】二、动手操作,探究问题1、观察与猜测。教师:这三种特殊的三角形内角和都是1800,1800是一个什么样的角?【生:平角】三角形内角的大小是不固定的,那么其它三角形的内角和又是多少度呢?(展示大小各异的三角形)它们的内角和有没有规律呢?是不是所有的三角形都是一样呢?这是一个……【锐角三角形】猜一猜它的内角和是多少度?直角三角形呢?还有钝角三角形呢?(板贴分类:锐角三角形,直角三角形和钝角三角形)三角形按角来分类,就分成锐角三角形、直角三角形和钝角三角形三种。教师:现在大家都猜测三角形的内角和是180°,要判断猜得对不对呢?用什么办法可以知道?(启发学生通过测量验证猜想结果)怎样量?再想想,还有别的办法吗?【拼】怎样拼?【生自由说】可以分别把三个角剪下或撕下拼在一起,还可以怎样做?【折】怎样折?折几个角?【生自由说】可以把三个角折在一起,折成一个什么样的角?【平角】(板书:量、折、拼)愿意尝试吗?【激励学生兴趣】提出合作要求:四人小组合作,选择自己能够做到或者愿意尝试的方法进行验证。采用测量验证的同学将所测量的度数填在相应三角形的表格中,算出内角和。【展示表格引导学生明确要求】愿意尝试“拼”的同学可以看看书本P85的介绍,老师给每个同学提供了一个平角,采用“折”或“拼”验证的同学看一看能否用得上。每个人都要验证三种不同的三角形,三种三角形验证完后再小组交流验证结果,按照屏幕上的步骤说一说。比一比哪组完成得最快最好。出示验证提示:⑴你选用什么三角形,采用什么方法来验证?⑵经过操作得到什么结论?2.动手验证。小组活动,教师巡视。【各种验证方法同时进行】3.汇报结果。⑴测量。①分小组对大小不一的三角形进行验证。②组织学生汇报。③教师:通过刚才的测量,你发现什么?(学生测量得出了三角形的内角和,多数是180°,但也有的是比180°小一点或大一点。)由于测量工具的误差,和制作的三角形不够标准,造成结果有偏差。三角形的内角和是一个固定的值,应该是多少度?【1800】⑵折:根据学生的反馈,引导学生找准角两边的中点,并沿边上的两个中心折角,再折其他两个角时也应这样做。⑶剪拼或撕拼:把一个三角形的三个角撕下来,拼成平角如下图。或者学生可能将三角形的三个内角依次画下来,最终形成一个平角。4.让学生拿起手中的三角形,让全体学生可以看到形状不同的、大小各异的许多三角形,它们的内角和都是1800。教师小结:不管三角形有多大,它的内角和总是1800。教师:同学们通过了自己动手操作证明这样一个重要的结论。刚才大家采用量、折或拼的方法验证了直角三角形、锐角三角形和钝角三角形的内角和都是1800。那么我们就知道了所有三角形的内角和都是1800。【板书:三角形的内角和是1800。】4.看书反馈质疑:今天我们学习了课本P85的内容,请同学们看书,有疑问可以提出来。(教师巡视质疑)教师:在一个三角形中,已知两个角的度数,我们可以利用定理求出第三个角的度数。利用这一规律能够帮助我们解决一些数学问题。三、应用延伸,解决问题1.求出下面每个三角形中未知角的度数。(列式计算)教师:你会做吗?怎样想?小结:利用“三角形的内角和是1800”减去已知角的度数和可以求出一个未知角的度数,再看下一题。【独立思考之后再同桌交流方法,引导学生说出方法。直角三角形求未知角度数的时候:第三个图还可以怎样想?】2.求出三角形各个角的度数。(列式计算)【P88的第9题】教师:看图,你获得哪些信息?引导:它们各是什么三角形?内角有什么特征?小结:要求特殊三角形某个角的度数时一定弄明白这个特殊三角形内角的特征,选择合理、灵活的方法解题。3.请给能组成一个三角形的三个角打“√”。⑴400700650()⑵600800400()⑶3501000550()⑷900480900()⑸3001200950()【引导学生说出理由,巩固三角形的内角和是1800。启发学生通过第⑶⑷小题明白任何一个直角三角形最多有一个直角;一个钝角三角形最多有一个钝角】4.一块三角板的内角和是1800。用两块完全一样的三角板拼成一个三角形,这个三角形的内角和是多少度?

指名指出拼成后的三角形,并指出三个内角。教师启发后小结:无论怎样拼,只要拼成是一个三角形,内角和都是1800。5.用一张正方形纸折一折,填一填。

教师启发后小结:无论怎样折,只要折成是一个三角形,内角和也都是1800。【引导学生明白:三角形的内角和是一个普遍规律,不因三角形的大小而改变,不因拼、折等图形变换而改变。】四、全课小结。这节课你学到了哪些知识?你最大的收获是什么?

《三角形的内角和》教学设计

《三角形的内角和》这一节课主要激发学生主动参与、自主探索的意识,锻炼动手能力,发展空间观念。以下是我为大家整理推荐关于四年级数学《三角形的内角和》教案,希望对大家有所帮助!

《三角形的内角和》教学设计

教材简析:

本节课的教学先通过计算三角尺的3个内角的度数的和,激发学生的好奇心,进而引发“三角形内角和是180度”的猜想,再通过组织操作活动验证猜想,得出结论。

教学目标:

1、让学生通过观察、操作、比较、归纳,发现“三角形的内角和是180º”。

2、让学生学会根据“三角形的内角和是180º”这一知识求三角形中一个未知角的度数。

3、激发学生主动参与、自主探索的意识,锻炼动手能力,发展空间观念。

教学准备:三角板,量角器、点子图、自制的三种三角形纸片等。

教学过程:

一、提出猜想:

老师取一块三角板,让学生分别说说这三个角的度数,再加一加,分别得到这样的2个算式:90º+60º+30º=180º,90º+45º+45º=180º

看了这2个算式你有什么猜想?

(三角形的三个角加起来等于180度)

二、验证猜想:

1、画、量:在点子图上,分别画锐角三角形、直角三角形、钝角三角形。画好后分别量出各个角的度数,再把三个角的度数相加。

老师注意巡视和指导。交流各自加得的结果,说说你的发现。

2、折、拼:学生用自己事先剪好的图形,折一折。

指名介绍折的方法:比如折的是一个锐角三角形,可以先把它上面的一个角折下,顶点和下面的边重合,再分别把左边、右边的角往里折,三个角的顶点要重合。发现:三个角会正好在一直线上,说明它们合起来是一个平角,也就是180度。

继续用该方法折钝角三角形,得到同样的结果。

直角三角形的折法有不同吗?

通过交流使学生明白:除了用刚才的方法之外,直角三角形还可以用更简便的方法折;可以直角不动,而把两个锐角折下,正好能拼成一个直角;两个直角的度数和也是180度。

3、撕、拼:可能有个别学生对折的方法感到有困难。那么还可以用撕的方法。

在撕之前要分别在三个角上标好角1、角2和角3。然后撕下三个角,把三个角的一条边、顶点重合,也能清楚地看到三个角合起来就是一个平角——180度。

小结:我们可以用多种方法,得到同样的结果:三角形的内角和是180º。

4、试一试:

三角形中,角1=75º,角2=39º,角3=()º

算一算,量一量,结果相同吗?

三、完成想想做做:

1、算出下面每个三角形中未知角的度数。

在交流的时候可以分别学生说说怎么算才更方便。比如第1题,可先算40加60等于100,再用180减100等于80º。第2题则先算180减110等于70,再用70减55更方便。第3题是直角三角形,可不用180去减,而用90减55更好。

指出:在计算的时候,我们可根据具体的数据选择更佳的算法。

2、一块三角尺的内角和是180º,用两块完全一样的三角尺拼成一个三角形,这个三角形的内角和是多少度?

可先猜想:两个三角形拼在一起,会不会它的内角和变成180×2=360º呢?为什么?

然后再分别算一算图上的这三个三角形的内角和。得出结论:三角形不论大小,它的内角和都是180º。

3、用一张正方形纸折一折,填一填。

4、说理:一个直角三角形中最多有几个直角?为什么?

一个钝角三角形中最多有几个直角?为什么?

《三角形的内角和》练习题

1、(第2题)你能连一连吗?

学生独立做,做完后把有疑问的几个选出来交流。

2、在钉子板上分别围出锐角三角形、直角三角形和钝角三角形。

学生围好后,互相检查验证。

3、用一张长方形纸,折出两个完全一样的直角三角形。

用一张正方形纸,折出四个完全一样的直角三角形。

让学生动手折一折,在交流的时候用“对角线“来说一说。

4、把右边这样的平行四边形纸剪成两个完全一样的锐角三角形,应该怎样剪?剪成两个完全一样的钝角三角形呢?

5、你能在下面的三角形中分别画一条线段,把它分成两个直角三角形吗?

通过交流使学生明白:画出的线段就是原来三角形的高。

本文链接:https://bk.89qw.com/a-978962

最近发表
网站分类